Graphs with coloring redundant edges

نویسندگان

  • Bart Demoen
  • Phuong-Lan Nguyen
چکیده

A graph edge is d-coloring redundant if the removal of the edge does not change the set of dcolorings of the graph. Graphs that are too sparse or too dense do not have coloring redundant edges. Tight upper and lower bounds on the number of edges in a graph in order for the graph to have a coloring redundant edge are proven. Two constructions link the class of graphs with a coloring redundant edge to the K4-free graphs and to the uniquely colorable graphs. The structure of graphs with a coloring redundant edge is explored.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Edge-coloring Vertex-weightings of Graphs

Let $G=(V(G),E(G))$ be a simple, finite and undirected graph of order $n$. A $k$-vertex weightings of a graph $G$ is a mapping $w: V(G) to {1, ldots, k}$. A $k$-vertex weighting induces an edge labeling $f_w: E(G) to N$ such that $f_w(uv)=w(u)+w(v)$. Such a labeling is called an {it edge-coloring k-vertex weightings} if $f_{w}(e)not= f_{w}(echr(chr(chr('39')39chr('39'))39chr(chr('39')39chr('39'...

متن کامل

On the Edge-Difference and Edge-Sum Chromatic Sum of the Simple Graphs

‎For a coloring $c$ of a graph $G$‎, ‎the edge-difference coloring sum and edge-sum coloring sum with respect to the coloring $c$ are respectively‎ ‎$sum_c D(G)=sum |c(a)-c(b)|$ and $sum_s S(G)=sum (c(a)+c(b))$‎, ‎where the summations are taken over all edges $abin E(G)$‎. ‎The edge-difference chromatic sum‎, ‎denoted by $sum D(G)$‎, ‎and the edge-sum chromatic sum‎, ‎denoted by $sum S(G)$‎, ‎a...

متن کامل

Fault-tolerant cube graphs and coding theory

Hypercubes, meshes, tori and Omega networks are well known interconnection networks for parallel computers. The structure of those graphs can be described in a more general framework called cube graphs. The idea is to assume that every node in a graph with q ` nodes is represented by a unique string of`symbols over GF (q). The edges are speciied by a set of oosets, those are vectors of lengthòv...

متن کامل

-λ coloring of graphs and Conjecture Δ ^ 2

For a given graph G, the square of G, denoted by G2, is a graph with the vertex set V(G) such that two vertices are adjacent if and only if the distance of these vertices in G is at most two. A graph G is called squared if there exists some graph H such that G= H2. A function f:V(G) {0,1,2…, k} is called a coloring of G if for every pair of vertices x,yV(G) with d(x,y)=1 we have |f(x)-f(y)|2 an...

متن کامل

Planar graphs with maximum degree D at least 8 are (D+1)-edge-choosable

We consider the problem of list edge coloring for planar graphs. Edge coloring is the problem of coloring the edges while ensuring that two edges that are incident receive different colors. A graph is k-edge-choosable if for any assignment of k colors to every edge, there is an edge coloring such that the color of every edge belongs to its color assignment. Vizing conjectured in 1965 that every...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • EJGTA

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2016